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Where we've been thus far...

+How does a population of neurons form a stable pattern of activation
to create a local decision about, say, the presence/absence of a
stimulus?
+Node dynamics; DST; attractors; relaxation time; bifurcations; instabilities; self-
stabilized state; self-sustaining state
+How does a neural population also reflect the meaning of a stimulus
or response—we need metric spaces
+ Dynamic fields; peaks; different forms of neural interaction; convolution; the
impact of noise; inputs; tracking; peak drift; peak interactions
+What are the neural principles that link DFT and neurophysiology; put
differently, how neural is DFT?
+ DPA,; evidence for neural interactions; functional topography; receptive fields;
adaptive nature of broad receptive fields; evidence for population coding
+What's the link between fields and motor behaviors? How do we get a
field to actually behave in the world?
+Robotics case study; turning peaks into behavioral dynamics; attractors and

repellors along behavioral dimensions like heading direction [E
A
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We've come quite far!

+Pat yourselves on the back!

LA

University of East Anglia

]
The next arc: higher-level cognition

Although we’ve come quite far, still a long way to go...Thus
far, we’'ve only handled very simple situations

+Detecting the presence/absence of a stimulus and
maintaining a working memory of that perceptual decision

+Detecting/forming a memory for a color or the location of
a stimulus

+Generating behavioral responses (button presses,
changes in heading direction) in response to a simple task

+At present, we can’t even encode and form a memory for
a colored, oriented bar...For that, need to move into

higher dimensions. [E&
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Multidimensional fields

How do we represent multi-feature objects?
+Typical approach in cognition: multi-dimensional space - one
dimension for each feature
+Color
+Orientation
+Shape
+Material
+Texture
+If we want to sample each dimension with 100 neurons, the full
representation of this 5D space neurally would require 1005 (10
billion) neurons [vs. 500 for 5 1D fields]

+there are approximately 100 billion neurons in a brain; so this
multidimensional approach would quickly exhaust the computational
power of the brain

+The moral: Multidimensional representations are costly!
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Multidimensional fields

Are there multidimensional fields in the brain?
+Yes!

+Many cells in early vision are 3D...sensitive to variations
in 2D spatial position and also tuned to a feature
dimension (e.g., simple orientation cells)

+What does it mean for the representation to be multi-
dimensional?

+The neural system is tuned to all possible combinations of the
dimensions

+Offers powerful framework for flexibility and generalization
+Consider two spatial dimensions as in visual cortex...
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Multidimensional fields

+The mathematics behind multiD field should look familiar:
U0 = ~u®) + h+ GO + J; k(x — x)g (ux))dx’
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What about different feature dimensions?

+Need to think about the metrics along each dimension

+Conceptually, the metrics specify the similarity relations

along each dimension

+Metrics along one space don’t have to be similar across
dimensions (two ‘units’ along a vertical dimension don’t have an
intrinsic relation to two ‘units’ along a color dimension)

+Mathematically, this just means that the kernels don'’t

have to be symmetric
+How do we set this? Could be based on behavioral data (e.g.,
model discrimination data for similar values along a dimension)
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Combinatorial explosion: revisited

+Multidimensional fields exist in the brain

+Multidimensional fields are straightforward
mathematically/dynamically

+But multidimensional fields are costly (in neural resources and
computational resources)...so use them sparingly!

Reconsider the multidimensional picture from cognitive science

+We don't really need a full multidimensional space for all feature
combinations...some regions of multidimensional space are actually
quite sparse [purple polka dot elephants...]

+Instead of representing a big empty space, what if we had a way to
effectively pull things into and out of a ‘bound’, high-dimensional

representation...
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Integration and selection in DFT
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Spatial selective attention
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Feature attention

visual scene
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Multidimensional integration and selection

+Selective attention gives us a way to
© (b v

move into and out of higher-
dimensional representation

+Consider a complex object: we can
represent a two-feature ‘L’ (color,
shape) using two, 2D representations

+The ‘bound’ object is the pattern of
peaks coupled along the spatial
dimension

+Could have a 5D representation of

© the object using 50,000 neurons
instead of 10 billion
UA
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Multidimensional integration and selection

@ +Limitation: have to ‘bind’ one object at

© ® a time using selective attention
+Can lead to errors under some conditions
(illusory conjunctions)
+Also need a way to keep track of
bindings: need to deal with binding in
working memory (not just binding in
perception)
+Tackle one piece of the working memory
story now...the rest will be in chapter 8

+Then we’ll use this bit of WM to help

explain illusory conjunctions
LEA
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Integration and selection with WM
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WM affects attentional selection
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WM, Attention & lllusory Conjunctions
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Conclusions

+Started with a sad statement: can’t even represent a
colored, oriented bar with DFT

+Ended with a framework that solves the combinatorial
explosion problem, explains illusory conjunctions, and
starts to give us insights into attentional selection and
selection via ‘top-down’ goals in WM

+Higher cognition might actually be within reach...
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