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Metric spaces

+Single dynamical node can ‘represent’ the
present/absence of input, but can’t tell you what that input
is (features) or where it is (space)
+For that, we need metric spaces...
+Green hue value
+20 deg to the right of midline
+The dog is similar to the cat
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How do we represent metrics neurally?

+Simplest example: topographic representation in visual
cortex...
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From nodes to fields
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Dynamic fields

Tu(x, t) = —ulx, t) + h+s(x, ) + f k(e —x)g(ulx',))dx’ + g (x, t)
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Different interactions = different behaviors

+Global inhibition = winner-take-all
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Different interactions = different behaviors
+Local-excitation / surround inhibition = multi-peak
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+Weak interactions = self-stabilized peaks
+Strong interactions = self-sustaining peaks
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Summary: Dynamic Fields

+Neuronal dynamics distributed over a metric space =
dynamic field

+Fields combine...
+Sigmoidal non-linearity
+Neural interaction function (convolution kernel)
+inputs

+Different neural interactions yield different behaviors
+ Self-stabilized (input-driven ‘encoding’)
+ Self-sustaining (working memory ‘consolidation’)
+Winner-take-all (decision-making)
+Multi-peak (multi-item working memory)
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Dynamic fields are not a neural analogy

+Evidence suggests that the brain actually work this way

+Neural population dynamics captured by DFT are
observable in cortex (e.g., surround inhibition)

0do4 mmw

Figure 6. The t it i DPAs (top) of ite stimuli (from left to right, 0.4-2.4° ion) were to the

of the ions of their 'y stimuli (bo!lam) The DPAs were based on spike activity of 178 cells averaged over the time interval
from 30 to 80 msec after stimulus onset. Same conventions as in Figure 2B, the color scale was normal.zed to peak activation separately for each column.
For small stimulus separation, note the remarkably reduced level of activation for the to the superimposed responses. The bimodal
distribution recorded for the largest stimulus separation comes close to match the superposmcm However, inhibitory interaction can still be observed.

Jancke et al. (1999) (E&
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Neural dynamics over multiple timescales

+Thus far, we’ve covered local decisions (peaks) within
neural populations

+In some cases, these decisions are short-lived = detect a
stimulus and then relax back to resting state

+In other cases, these decisions can remain for up to 30 or
more seconds > self-sustaining peaks (working memory)

+But what about neural dynamics that extend over the
timescales of learning and development?
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Memory traces

+Operates like a linear system at each field site (activation
in field moves attractor to 1; absence of activation moves
attractor to 0)

+Accumulate a trace as long as above-threshold activity

+Can have a convolution kernel that smears memory trace
effects out over metric space

+Can also have a separate decay rate

Tmemtmem (¥, £) = —Umem (x, ) + g(u(x, ) 2.4)

ta(x.t) = —u(x, ) + h+ 506, ) + Cnemtmen (6, 8) + [ k(x —x)g(ulx',))dx’  (2.5)
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Building peaks from memory traces

A activation

+Memory trace + h boost
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Evidence for memory traces

Lipinksi, Samuelson, Spencer (2010)
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What about development?

+Spatial precision hypothesis: excitatory and inhibitory
neural interactions become stronger over development
(via a self-organizing or locally Hebbian process)

+This has multiple — g"yi'frs

......... years

consequences... 1o 1 === 3years
+Peaks build faster 3
(faster RTs) o

+Peaks become narrower
(enhance discrimination) _,

+Peaks become stronger
and more self-sustaining
(more robust WM and
higher capacity)
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The SPH Emerges from Experience
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Summary: Learning & Development

+Memory traces open up DFT to neural processes that
extend over a learning timescale

+We can also capture developmental change by increasing
the strength of excitatory and inhibitory neural interactions

+Recent work suggests a link between the accumulation of
memory traces distributed over metric dimensions and
developmental changes in neural interaction strength
+Learning and development might be mechanistically related
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